Chapter 3.0 Propagation
Section 3.2 Ionosphere & Magnetosphere

G3A06 (D) p.67
What is a geomagnetic storm?
A. A sudden drop in the solar flux index
B. A thunderstorm which affects radio propagation
C. Ripples in the ionosphere
D. A temporary disturbance in the Earth's magnetosphere

G3A08 (B) p.83
Which of the following effects can a geomagnetic storm have on radio propagation?
A. Improved high-latitude HF propagation
B. Degraded high-latitude HF propagation
C. Improved ground-wave propagation
D. Improved chances of UHF ducting

G3A12 (B) p.77
What does the K-index indicate?
A. The relative position of sunspots on the surface of the Sun
B. The short term stability of the Earth’s magnetic field
C. The stability of the Sun's magnetic field
D. The solar radio flux at Boulder, Colorado

G3A13 (C) p.77
What does the A-index indicate?
A. The relative position of sunspots on the surface of the Sun
B. The amount of polarization of the Sun's electric field
C. The long term stability of the Earth’s geomagnetic field
D. The solar radio flux at Boulder, Colorado

G3A16 (A) p.77
What is a possible benefit to radio communications resulting from periods of high geomagnetic activity?
A. Auroras that can reflect VHF signals
B. Higher signal strength for HF signals passing through the polar regions
C. Improved HF long path propagation
D. Reduced long delayed echoes

G3B05 (A) p.76
What usually happens to radio waves with frequencies below the MUF and above the LUF when they are sent into the ionosphere?
A. They are bent back to the Earth
B. They pass through the ionosphere
C. They are amplified by interaction with the ionosphere
D. They are bent and trapped in the ionosphere to circle the Earth
G3B06 (C) p.75
What usually happens to radio waves with frequencies below the LUF?
A. They are bent back to the Earth
B. They pass through the ionosphere
C. They are completely absorbed by the ionosphere
D. They are bent and trapped in the ionosphere to circle the Earth

G3B07 (A) p.75
What does LUF stand for?
A. The Lowest Usable Frequency for communications between two points
B. The Longest Universal Function for communications between two points
C. The Lowest Usable Frequency during a 24 hour period
D. The Longest Universal Function during a 24 hour period

G3B08 (B) p.75
What does MUF stand for?
A. The Minimum Usable Frequency for communications between two points
B. The Maximum Usable Frequency for communications between two points
C. The Minimum Usable Frequency during a 24 hour period
D. The Maximum Usable Frequency during a 24 hour period

G3B11 (A) p.75
What happens to HF propagation when the LUF exceeds the MUF?
A. No HF radio frequency will support ordinary sky-wave communications over the path
B. HF communications over the path are enhanced
C. Double hop propagation along the path is more common
D. Propagation over the path on all HF frequencies is enhanced

G3B12 (D) p.75
What factor or factors affect the MUF?
A. Path distance and location
B. Time of day and season
C. Solar radiation and ionospheric disturbances
D. All of these choices are correct

G3C01 (A) p.73
Which ionospheric layer is closest to the surface of the Earth?
A. The D layer
B. The E layer
C. The F1 layer
D. The F2 layer

G3C02 (A) p.73
Where on the Earth do ionospheric layers reach their maximum height?
A. Where the Sun is overhead
B. Where the Sun is on the opposite side of the Earth
C. Where the Sun is rising
D. Where the Sun has just set
G3C03 (C) p.73
Why is the F2 region mainly responsible for the longest distance radio wave propagation?
A. Because it is the densest ionospheric layer
B. Because it does not absorb radio waves as much as other ionospheric regions
C. Because it is the highest ionospheric region
D. All of these choices are correct

G3C04 (D) p.74
What does the term "critical angle" mean as used in radio wave propagation?
A. The long path azimuth of a distant station
B. The short path azimuth of a distant station
C. The lowest takeoff angle that will return a radio wave to the Earth under specific ionospheric conditions
D. The highest takeoff angle that will return a radio wave to the Earth under specific ionospheric conditions

G3C12 (D) p.73
Which ionospheric layer is the most absorbent of long skip signals during daylight hours on frequencies below 10 MHz?
A. The F2 layer
B. The F1 layer
C. The E layer
D. The D layer